From: admin Date: Fri, 5 Apr 2024 02:50:45 +0000 (+0900) Subject: Implement a new type system X-Git-Url: https://git.vouivredigital.com/?a=commitdiff_plain;h=701c145be66145d48118666f786165712d5abbdc;p=vouivre.git Implement a new type system --- diff --git a/vouivre/misc.scm b/vouivre/misc.scm index accc3ba..7f51bfa 100644 --- a/vouivre/misc.scm +++ b/vouivre/misc.scm @@ -17,9 +17,11 @@ (define-module (vouivre misc) #:use-module (ice-9 arrays) + #:use-module (ice-9 match) #:use-module (srfi srfi-1) #:export - (array-map + (alist<-plist + array-map array-map-indexed flip for-indices-in-range @@ -30,6 +32,20 @@ produce-array produce-typed-array)) +(define (alist<-plist plist) + "Convert a property list to an association list." + (cdr + (fold-right + (lambda (x prev) + (match-let (((p . bindings) prev)) + (if (null? p) + (cons (cons #f x) bindings) + (begin + (set-car! p x) + (cons '() (cons p bindings)))))) + '(() . ()) + plist))) + (define (flip f) "Returns a procedure behaving as `f', but with arguments taken in reverse order." diff --git a/vouivre/rules.scm b/vouivre/rules.scm new file mode 100644 index 0000000..28f36d3 --- /dev/null +++ b/vouivre/rules.scm @@ -0,0 +1,292 @@ +;;;; Copyright (C) 2024 Vouivre Digital Corporation +;;;; +;;;; This file is part of Vouivre. +;;;; +;;;; Vouivre is free software: you can redistribute it and/or +;;;; modify it under the terms of the GNU General Public +;;;; License as published by the Free Software Foundation, either +;;;; version 3 of the License, or (at your option) any later version. +;;;; +;;;; Vouivre is distributed in the hope that it will be useful, +;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +;;;; General Public License for more details. +;;;; +;;;; You should have received a copy of the GNU General Public +;;;; License along with Vouivre. If not, see . + +(define-module (vouivre type rules) + #:use-module (vouivre type system)) + +;;;; Structural Rules + +(define-rule formation-1 () + ((Γ ⊢ (type A)) + (Γ (: x A) ⊢ (type (B x))))) + +(define-rule formation-2 () + ((Γ ⊢ (type A)) + (Γ ⊢ (≐ A B)))) + +(define-rule formation-3 () + ((Γ ⊢ (type B)) + (Γ ⊢ (≐ A B)))) + +(define-rule formation-4 () + ((Γ ⊢ (type A)) + (Γ ⊢ (: a A)))) + +(define-rule formation-5 () + ((Γ ⊢ (: a A)) + (Γ ⊢ (≐ a b A)))) + +(define-rule formation-6 () + ((Γ ⊢ (: b A)) + (Γ ⊢ (≐ a b A)))) + +(define-rule type-reflexive () + ((Γ ⊢ (≐ A A)) + (Γ ⊢ (type A)))) + +(define-rule type-symmetric () + ((Γ ⊢ (≐ B A)) + (Γ ⊢ (≐ A B)))) + +(define-rule type-transitive () + ((Γ ⊢ (≐ A C)) + (Γ ⊢ (≐ A B)) + (Γ ⊢ (≐ B C)))) + +(define-rule :-reflexive () + ((Γ ⊢ (≐ a a A)) + (Γ ⊢ (: a A)))) + +(define-rule :-symmetric () + ((Γ ⊢ (≐ b a A)) + (Γ ⊢ (≐ a b A)))) + +(define-rule :-transitive () + ((Γ ⊢ (≐ a c A)) + (Γ ⊢ (≐ a b A)) + (Γ ⊢ (≐ b c A)))) + +(define-rule variable-conversion () + ((Γ (: x A') Δ ⊢ J) + (Γ ⊢ (≐ A A')) + (Γ (: x A) Δ ⊢ J))) + +(define-rule substitution () + ((Γ (/ Δ a x) ⊢ (/ J a x)) + (Γ ⊢ (: a A)) + (Γ (: x A) Δ ⊢ J))) + +(define-rule substitution-type-congruence () + ((Γ (/ Δ a x) ⊢ (≐ (/ B a x) (/ B a' x))) + (Γ ⊢ (≐ a a' A)) + (Γ (: x A) Δ ⊢ (type B)))) + +(define-rule substitution-:-congruence () + ((Γ (/ Δ a x) ⊢ (≐ (/ b a x) (/ b a' x) (/ B a x))) + (Γ ⊢ (≐ a a' A)) + (Γ (: x A) Δ ⊢ (: b B)))) + +(define-rule weakening () + ((Γ (: x A) Δ ⊢ J) + (Γ ⊢ (type A)) + (Γ Δ ⊢ J))) + +(define-rule generic-element () + ((Γ (: x A) ⊢ (: x A)) + (Γ ⊢ (type A)))) + +;;;; Ordinary Function Type + +(define-rule → () + ((Γ ⊢ (type (→ A B))) + (Γ ⊢ (type A)) + (Γ ⊢ (type B)))) + +(define-rule →-eq () + ((Γ ⊢ (≐ (→ A B) + (→ A' B'))) + (Γ ⊢ (≐ A A')) + (Γ ⊢ (≐ B B')))) + +(define-rule λ () + ((Γ ⊢ (: (λ x (b x)) + (→ A B))) + (Γ ⊢ (type B)) + (Γ (: x A) ⊢ (: (b x) B)))) + +(define-rule λ-eq () + ((Γ ⊢ (≐ (λ x (b x)) + (λ x (b' x)) + (→ A B))) + (Γ (: x A) ⊢ (≐ (b x) (b' x) B)))) + +(define-rule ev () + ((Γ (: x A) ⊢ (: (f x) B)) + (Γ ⊢ (: f (→ A B))))) + +(define-rule ev-eq () + ((Γ (: x A) ⊢ (≐ (f x) (f' x) B)) + (Γ ⊢ (≐ f f' (→ A B))))) + +(define-rule β () + ((Γ (: x A) ⊢ (≐ ((λ y (b y)) x) + (b x) + B)) + (Γ ⊢ (type B)) + (Γ (: x A) ⊢ (: (b x) B)))) + +(define-rule η () + ((Γ ⊢ (≐ (λ x (f x)) + f + (→ A B))) + (Γ ⊢ (: f (→ A B))))) + +;;;; Boolean Type + +(define-rule bool-formation () + ((⊢ (type Bool)))) + +(define-rule bool-introduction-1 () + ((⊢ (: true Bool)))) + +(define-rule bool-introduction-2 () + ((⊢ (: false Bool)))) + +(define-rule bool-elimination () + ((⊢ (: if (→ Bool (→ A (→ A A))))) + (⊢ (type A)))) + +(define-rule bool-computation-1 () + ((⊢ (≐ (((if true) x) y) + x + Bool)))) + +(define-rule bool-computation-2 () + ((⊢ (≐ (((if false) x) y) + y + Bool)))) + +;;;; Ordinary Pair Type + +(define-rule pair-formation () + ((⊢ (type (Pair A B))) + (⊢ (type A)) + (⊢ (type B)))) + +(define-rule pair-introduction () + ((⊢ (: (pair a b) (Pair A B))) + (⊢ (: a A)) + (⊢ (: b B)))) + +(define-rule pair-elimination-1 () + ((⊢ (: first (→ (Pair A B) + A))) + (⊢ (type A)) + (⊢ (type B)))) + +(define-rule pair-elimination-2 () + ((⊢ (: second (→ (Pair A B) + B))) + (⊢ (type A)) + (⊢ (type B)))) + +(define-rule pair-computation-1 () + ((⊢ (≐ (first (pair a b)) + a A)) + (⊢ (: a A)) + (⊢ (: b B)))) + +(define-rule pair-computation-2 () + ((⊢ (≐ (second (pair a b)) + b B)) + (⊢ (: a A)) + (⊢ (: b B)))) + +;;;; Derivations + +(define-derivation change-of-variables ((Γ (: x' A) Δ ⊢ J) + (Γ ⊢ (type A)) + (Γ (: x A) Δ ⊢ J)) + (substitution #:index 2 a x' x x A A) + (generic-element #:index 1) + (exact) + (weakening #:index 1) + (exact) + (exact)) + +(define-derivation interchange ((Γ (: y B) (: x A) Δ ⊢ J) + (Γ ⊢ (type B)) + (Γ ⊢ (type A)) + (Γ (: x A) (: y B) Δ ⊢ J)) + (substitution #:index 3 a y x y' A B) + (weakening #:index 2) + (weakening #:index 1) + (exact) + (exact) + (generic-element #:index 1) + (exact) + (weakening #:index 1) + (exact) + (substitution #:index 3 a y' x y A B) + (weakening #:index 1) + (exact) + (generic-element #:index 1) + (exact) + (weakening #:index 2) + (weakening #:index 1) + (exact) + (exact) + (exact)) + +(define-derivation element-conversion ((Γ ⊢ (: a A')) + (Γ ⊢ (: a A)) + (Γ ⊢ (≐ A A'))) + (substitution a a x a' A A) + (exact) + (variable-conversion #:index 1 A A') + (type-symmetric) + (exact) + (generic-element #:index 1) + (formation-3 A A) + (exact)) + +(define-derivation congruence ((Γ ⊢ (≐ a b A')) + (Γ ⊢ (≐ a b A)) + (Γ ⊢ (≐ A A'))) + (substitution-:-congruence #:index 1 a a a' b x x A A) + (exact) + (variable-conversion #:index 1 A A') + (type-symmetric) + (exact) + (generic-element #:index 1) + (formation-3) + (exact)) + +(define-derivation identity ((Γ ⊢ (: (λ x x) (→ A A))) + (Γ ⊢ (type A))) + (λ) + (exact) + (generic-element #:index 1) + (exact)) + +(define-derivation not ((⊢ (: (λ x (((if x) false) true)) + (→ Bool Bool)))) + (λ) + (bool-formation) + (substitution a true x y A Bool) + (weakening #:index 0) + (bool-formation) + (bool-introduction-1) + (ev #:index 1) + (substitution a false x y A Bool) + (weakening #:index 0) + (bool-formation) + (bool-introduction-2) + (ev #:index 1) + (ev #:index 0) + (bool-elimination) + (bool-formation)) diff --git a/vouivre/system.scm b/vouivre/system.scm new file mode 100644 index 0000000..042570e --- /dev/null +++ b/vouivre/system.scm @@ -0,0 +1,527 @@ +;;;; Copyright (C) 2024 Vouivre Digital Corporation +;;;; +;;;; This file is part of Vouivre. +;;;; +;;;; Vouivre is free software: you can redistribute it and/or +;;;; modify it under the terms of the GNU General Public +;;;; License as published by the Free Software Foundation, either +;;;; version 3 of the License, or (at your option) any later version. +;;;; +;;;; Vouivre is distributed in the hope that it will be useful, +;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of +;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +;;;; General Public License for more details. +;;;; +;;;; You should have received a copy of the GNU General Public +;;;; License along with Vouivre. If not, see . + +(define-module (vouivre type system) + #:use-module (ice-9 match) + #:use-module (ice-9 receive) + #:use-module (srfi srfi-1) + #:use-module (srfi srfi-9) + #:use-module (vouivre misc) + #:export + (*rules* + apply-rule + apply-rules + conclusion + d + define-derivation + define-rule + exact + list-hypotheses)) + +(define *rules* (make-hash-table)) +(define reserved-symbols '(: ≐ ⊢ type /)) + +(define-record-type derivation + (make-derivation tree points) + derivation? + (tree derivation-tree) + (points derivation-points derivation-points-set!)) + +(define-record-type evaluation + (make-evaluation function value) + evaluation? + (function evaluation-function) + (value evaluation-value)) + +(define (papply proc . args) + (lambda (. rest) + (apply proc (append args rest)))) + +(define (all pred lst) + "Like `every', but return the list of all `pred' return values on success." + (call/cc + (lambda (break) + (reverse + (fold + (lambda (x prev) + (if-let (y (pred x)) + (cons y prev) + (break #f))) + '() lst))))) + +(define (unreserved-symbol? x) + (and (symbol? x) + (not (member x reserved-symbols)))) + +(define (parse-unreserved-symbol expr) + (if (and (symbol? expr) + (not (member expr reserved-symbols))) + expr + #f)) + +(define (parse-type-variable expr) + (parse-unreserved-symbol expr)) + +(define (parse-type expr) + (match expr + ((? parse-unreserved-symbol A) + expr) + (((? parse-unreserved-symbol B) + (? parse-type x) + ..1) + expr) + (_ #f))) + +(define (parse-type-variable-declaration expr) + (match expr + ((': (? parse-type-variable x) + (? parse-type A)) + (list ': x A)) + (_ #f))) + +(define (parse-context expr) + (match expr + (((? parse-type-variable-declaration X) ...) + expr) + (((? parse-unreserved-symbol Γ) + (? parse-type-variable-declaration X) + ... + (? parse-unreserved-symbol Δ)) + expr) + (((? parse-unreserved-symbol Γ) + (? parse-type-variable-declaration X) + ... + ('/ (? parse-unreserved-symbol Δ) + (? unreserved-symbol? x) + (? unreserved-symbol? y))) + expr) + (((? parse-unreserved-symbol Γ) + (? parse-type-variable-declaration X) + ...) + expr) + (_ #f))) + +(define (parse-element expr) + (match expr + ((? parse-unreserved-symbol a) + expr) + (((? parse-unreserved-symbol b) + (? parse-element x) + ...) + expr) + (((? parse-element b) + (? parse-type-variable x)) + expr) + (_ #f))) + +(define (parse-judgment expr) + (match expr + ((context ... '⊢ J) + (and (parse-context context) + (match J + ;; generic judgment thesis + ((? unreserved-symbol? J) + expr) + (('/ (? unreserved-symbol? J) + (? unreserved-symbol? a) + (? unreserved-symbol? x)) + expr) + ;; type + (('type (? parse-type A)) + expr) + ;; judgmentally equal types + (('≐ ('/ (? parse-type A) + (? unreserved-symbol? x) + (? unreserved-symbol? y)) + ('/ (? parse-type B) + (? unreserved-symbol? x') + (? unreserved-symbol? y))) + expr) + (('≐ (? parse-type A) + (? parse-type B)) + expr) + ;; judgmentally equal elements of a type + (('≐ ('/ (? parse-element a) + (? unreserved-symbol? x) + (? unreserved-symbol? y)) + ('/ (? parse-element b) + (? unreserved-symbol? x') + (? unreserved-symbol? y)) + ('/ (? parse-type A) + (? unreserved-symbol? x) + (? unreserved-symbol? y))) + expr) + (('≐ (? parse-element a) + (? parse-element b) + (? parse-type A)) + expr) + ;; element of a type + ((': (? parse-element a) + (? parse-type A)) + expr) + ;; + (_ #f)))) + (_ #f))) + +(define (parse literals judgments) + "Parse literals and judgments of a rule returning them as a cons cell on +success and `#f' on failure." + (and (list? literals) + (every symbol? literals) + (match judgments + ((C Hs ...) + (and=> (all parse-judgment judgments) + (papply cons literals))) + (_ #f)))) + +(defmacro define-rule (name literals judgments) + (let ((x (parse literals judgments))) + (ifn x + (error "SYNTAX ERROR") + (begin + (hash-set! *rules* name `,x) + `(hash-set! *rules* ',name ',x))))) + +(define* (apply-rule derivation name #:key index . args) + (if (eq? name 'exact) + (exact derivation) + (if-let (rule (hash-ref *rules* name)) + (match-let (((literals . (C Hs ...)) rule)) + (let* ((ps (derivation-points derivation)) + (p (car ps)) + (expr (car p))) + (and=> + (match-judgment + expr C + ;; When `#:index' is provided the evaluator adds it to + ;; the head of the `args' list (see the documentation + ;; `define*') followed by its value, and they must be + ;; removed. + (alist<-plist (ifn index args (cddr args))) + index) + (lambda (bindings) + (and=> + (call/cc + (lambda (break) + ;; Each hypothesis, with bindings replaced, is wrapped + ;; in a cons cell, to be added to the derivation + ;; points. + (map (lambda (hypothesis) + (list (or (replace-in-judgment hypothesis bindings) + (break #f)))) + Hs))) + (lambda (points) + (set-cdr! p points) + ;; Remove the current point, adding its leaves as new + ;; points. + (derivation-points-set! derivation (append points + (cdr ps))) + derivation)))))) + (error "Rule undefined.")))) + +(define (apply-rules derivation rules) + (call/cc + (lambda (break) + (fold (lambda (rule prev) + (if-let (x (apply apply-rule prev (car rule) (cdr rule))) + x + (break #f))) + derivation rules)))) + +(define (split-in-three lst start end) + "Split the given list in three with `start' and `end' the indices delimiting +the resulting middle list e.g. (a b c d e) 2 3 => (a b) (c) (d e)." + (let rec ((i 0) + (xs '()) + (ys '()) + (zs lst)) + (if (= i end) + (values (reverse xs) + (reverse ys) + zs) + (if (< i start) + (rec (1+ i) + (cons (car zs) xs) + ys + (cdr zs)) + (rec (1+ i) + xs + (cons (car zs) ys) + (cdr zs)))))) + +(define (sub e x y) + (define (sub% e x y) + (if (eq? e x) + y + (if (symbol? e) + e + (map (lambda (e) (sub e x y)) e)))) + (ifn x e (sub% e x y))) + +(define* (match-context expr pattern bindings #:optional index) + "Match a context pattern to a context expression, binding symbols in the +process. Return `#f' if the pattern fails to match or the updated bindings +otherwise. + +expr: Context expression. + +pattern: Context pattern. For examples, look at the left side of `⊢' in + instances of `define-rule'. + +bindings: Association list of symbols to matched sub-expressions. + +index: Index of the first type variable in the expression that corresponds to + an explicit type variable in the pattern. This is for cases like the + expression (: x1 A1) ... (: xn An) with the pattern (Γ (: x X) Δ) + where it is unclear from the pattern alone which variable `x' + corresponds to." + ;; NOTE: By construction, `expr' has the proper syntax. + (let* ((m (length expr)) + (index (or index m)) + (bind-symbols + (lambda* (Γ xs As Δ #:optional u v) + (let ((n (length xs))) + (if (> n (- m index)) + #f + (receive (gammas explicit deltas) + (split-in-three expr index (+ index n)) + (fold (lambda (x A z prev) + (match-let (((': x' A') z)) + (acons x x' (acons A A' prev)))) + (ifn Γ + (ifn Δ + bindings + (acons Δ (sub deltas u v) + bindings)) + (ifn Δ + (acons Γ gammas bindings) + (acons Γ gammas (acons Δ (sub deltas u v) + bindings)))) + xs As explicit))))))) + (match pattern + (() + (and (= 0 m) bindings)) + (((? symbol? Γ) (': x A) ...) + (bind-symbols Γ x A #f)) + (((? symbol? Γ) (': x A) ... ('/ Δ u v)) + (bind-symbols Γ x A Δ u v)) + (((? symbol? Γ) (': x A) ... Δ) + (bind-symbols Γ x A Δ)) + (((': x A) ...) + (bind-symbols #f x A #f)) + (((': x A) ... ('/ Δ u v)) + (bind-symbols #f x A Δ u v)) + (((': x A) ... Δ) + (bind-symbols #f x A Δ)) + (_ (error "Unsupported context pattern syntax."))))) + +(define (match-content expr pattern bindings) + "See the documentation for `match-context', only here we match the content of +judgments, i.e. anything right of a `⊢' in instances of `define-rule', and no +ambiguity arises." + ;; NOTE: By construction, `expr' has the proper syntax. + (define (equal-expr? v e x y) + (or (and (not y) + (eq? v e)) + (and (eq? v y) + (eq? e x)) + (and (list? v) + (list? e) + (= (length v) + (length e)) + (every (lambda (v e) + (equal-expr? v e x y)) + v e)))) + (define* (bind-symbols expr pattern bindings + #:optional generic-judgment? x y) + (cond + ((member pattern reserved-symbols) + (and (eq? pattern expr) + bindings)) + (generic-judgment? + (if (assoc-ref bindings pattern) + (error "Generic judgment thesis already bound.") + (acons pattern (sub expr x y) bindings))) + ((symbol? pattern) + (if-let (val (assoc-ref bindings pattern)) + (and (equal-expr? val expr x y) + bindings) + (acons pattern (sub expr x y) bindings))) + ((list? pattern) + (match pattern + (('/ B x' y') + (let ((x' (assoc-ref bindings x')) + (y' (assoc-ref bindings y'))) + (unless (and x' y') + (error "Unbound substitution element.")) + (bind-symbols expr B bindings #f x' y'))) + (((? unreserved-symbol? b) + x) + (if (list? expr) + (and + (= 2 (length expr)) + (or (not (assoc-ref bindings b)) + (equal-expr? (first expr) + (assoc-ref bindings b) + #f #f)) + (or (not (assoc-ref bindings x)) + (equal-expr? (second expr) + (assoc-ref bindings x) + #f #f)) + (acons b + (make-evaluation (first expr) + (second expr)) + bindings)) + ;; a symbol + (acons b + (make-evaluation #f expr) + bindings))) + (else + (and (list? expr) + (= (length pattern) + (length expr)) + (call/cc + (lambda (break) + (fold-right (lambda (e p prev) + (if prev + (bind-symbols e p prev #f x y) + (break #f))) + bindings expr pattern))))))))) + (define* (match-content% expr pattern bindings + #:optional generic-judgment? x y) + (match pattern + (('type A) + (bind-symbols expr pattern bindings #f x y)) + ((': a A) + (bind-symbols expr pattern bindings #f x y)) + (('≐ A B) + (bind-symbols expr pattern bindings #f x y)) + (('≐ a b A) + (bind-symbols expr pattern bindings #f x y)) + ((? symbol? J) + (bind-symbols expr J bindings #t x y)) + (('/ J (? symbol? x) (? symbol? y)) + (let ((x (assoc-ref bindings x)) + (y (assoc-ref bindings y))) + (unless (and x y) + (error "Unbound substitution element.")) + (match-content% expr J bindings (symbol? J) x y))) + (_ (error "Unsupported content pattern syntax.")))) + (match-content% expr pattern bindings)) + +(define* (match-judgment expr pattern bindings #:optional index) + ;; NOTE: By construction, `expr' has the proper syntax. + (match pattern + ((ctx ... '⊢ J) + (match expr + ((ctx' ... '⊢ J') + (and=> (match-context ctx' ctx bindings index) + (lambda (bindings) + (match-content J' J bindings)))))) + (_ (error "Unsupported judgment pattern syntax.")))) + +(define (replace-in-judgment pattern bindings) + "Replace all bound symbols (leaves) in the pattern (tree)." + (define (replace-in-ctx x) + (if (symbol? x) + (or (assoc-ref bindings x) + x) + (map replace-in-ctx x))) + (define (replace-in-content x) + (match x + ((? symbol? x) + (if-let (y (assoc-ref bindings x)) + (ifn (evaluation? y) + y + (if (evaluation-function y) + (evaluation-function y) + (error "Can't separate function from value."))) + x)) + (((? unreserved-symbol? b) + (? symbol? y)) + (let ((z (assoc-ref bindings b))) + (ifn (evaluation-function z) + (evaluation-value z) + (list (evaluation-function z) + (evaluation-value z))))) + (else + (map replace-in-content x)))) + (match pattern + ((ctx ... '⊢ J) + (append + (concatenate + (map (lambda (x) + (if (list? x) + (list (replace-in-ctx x)) + (let ((y (replace-in-ctx x))) + (if (symbol? y) + (list y) + y)))) + ctx)) + (list '⊢ (replace-in-content J)))) + (_ (error "Unsupported judgment pattern syntax.")))) + +(define (d expr) + (let ((tree (list expr))) + (make-derivation tree (list tree)))) + +(define (exact derivation) + (let* ((ps (derivation-points derivation)) + (p (car ps))) + (set-cdr! p '.) + (derivation-points-set! derivation (cdr ps)) + derivation)) + +(define (list-hypotheses derivation) + (delete-duplicates + (let rec ((tree (derivation-tree derivation))) + (if (eq? '. (cdr tree)) + (list (car tree)) + (fold-right + (lambda (x prev) + (append (rec x) prev)) + '() + (cdr tree)))) + equal?)) + +(define conclusion (compose car derivation-tree)) + +(defmacro define-derivation% (name conclusion hypotheses . rules) + (let ((C (parse-judgment conclusion)) + (Hs (all parse-judgment hypotheses))) + (ifn (and C Hs) + (error "SYNTAX") + (if-let (derivation (apply-rules (d C) rules)) + (let ((Hs' (list-hypotheses derivation))) + (ifn (and (null? (lset-difference equal? Hs' Hs)) + (null? (lset-difference equal? Hs Hs'))) + (error "DERIVATION 1") + (begin + (hash-set! *rules* + name + (cons '() `(,conclusion ,@hypotheses))) + `(hash-set! *rules* + ',name + (cons '() '(,conclusion ,@hypotheses)))))) + (error "DERIVATION 2"))))) + +(define-syntax-rule (define-derivation name + (conclusion hypothesis ...) + (rule arg ...) ...) + (define-derivation% name conclusion (hypothesis ...) + (rule arg ...) + ...))